ORIE6217/CS6384: Applied Bayesian

Data Analysis for Research
Lecture 3: Priors and multivariate models
Nikhil Garg



Announcements



Lecture plan

* Priors P(6)

 Multivariate models
e Normal distribution
* Regression



Priors



Priors

e Conjugate prior (BDA3 p. 35)

e Noninformative prior (BDA3 p. 51)

e Proper and improper prior (BDA3 p. 52)
e \Weakly informative prior (BDA3 p. 55)

e Informative prior (BDA3 p. 55)

e Prior sensitivity (BDA3 p. 38)



Conjugate prior

e Prior and posterior have the same form

e only for exponential family distributions (plus for some
Irregular cases)

e Used to be important for computational reasons, and still
sometimes used for special models to allow partial analytic
marginalization (Ch 3)

e with dynamic Hamiltonian Monte Carlo used e.g. in Stan no
computational benefit



Beta prior for Binomial model

e Prior
Beta(0|a, B) oc 0«71(1 — 9)B-1

e Posterior
p(Oly,n, M) cc@ (1 — 6)"Y9aL(1 — 9)FL
cctal(qp — gy y+hl
after normalization
p(6ly,n, M) = Beta(Bla +y, B +n —y)

e (a—1)and (B —1) can considered to be number of prior
observations

e Uniform priorwhena=1andf =1
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Placenta previa
e Beta prior centered on population average 0.485

alpha/(alpha+beta)=0.488, alpha+beta=2

alpha/(alpha+beta)=0.488, alpha+beta=20

Posterior with unif prior — Prior Posterior
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Placenta previa
e Beta prior centered on population average 0.485

alpha/(alpha+beta)=0.488, alpha+beta=2

alpha/(alpha+beta)=0.488, alpha+beta=20

P

4/

alpha/(alpha+beta)=0.488, alpha+beta=200

0.40 0.45 0.50

—— Posterior with unif prior — Prior —— Posterior

22147



Noninformative prior, proper and improper prior

e Vague, flat, diffuse, or noninformative

e try to “to let the data speak for themselves”

e flat is not non-informative

e flat can be stupid

e making prior flat somewhere can make it non-flat
somewhere eIJse

e Properpriorhas p(0)=1
e Improper prior density doesn'’t have a finite integral
e the posterior can still sometimes be proper



Weakly informative priors

e \Weakly informative priors produce computationally better
behaving posteriors
e quite often there's at least some knowledge about the scale
e useful also if there’s more information from previous
observations, but not certain how well that information is
applicable in a new case uncertainty

26/47



Weakly informative priors

e \Weakly informative priors produce computationally better
behaving posteriors
e quite often there's at least some knowledge about the scale
e useful also if there’s more information from previous
observations, but not certain how well that information is
applicable in a new case uncertainty

e Construction

e Start with some version of a noninformative prior distribution
and then add enough information so that inferences are
constrained to be reasonable.

e Start with a strong, highly informative prior and broaden it to
account for uncertainty in one’s prior beliefs and in the
applicability of any historically based prior distribution to new
data.

e Stan team prior choice recommendations https://github.com/
stan-dev/stan/wiki/Prior-Choice-Recommendations
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Multivariate models



Normal distribution
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Calculate posterior for normal distribution
with uninformative prior

Marginal posterior p(c? | y) (easier for o2 than o)
p?1y) x [ pluo? |y
x /a‘”_z exp (—1 {(n —1)s° 4+ n(y — ;L)z]) du

202

’
x o " Cexp (—ﬁ(n — 1)32)

/eXp (—2%207 - #)2) du

’
x o " Zexp (—ﬁ(n — 1)52) \/2mo2/n

2
~x (02)—(n+1)/2exp _(n—1)3
202

Pl 1y) = Inv-3(0? | n—1,83)



=> Posterior for g*

Known mean

0% | y ~ Inv-x*(n, v)

1 o )
where VE;U/,—Q)

Unknown mean

o |y ~ Inv-x%(n—1, 5%)

I _
where s% = — > (vi—¥)y
=1



Posterior for u
Marginal posterior p(y. | y)

Pl | y) = /0 " b, 0? | y)do?

x /OOO o "% exp (—217 [(n —1)s* +n(y — ,u)z]) do?

Transformation

A
—(p— 1)g2 )2 _
A=(n—-1)s"+n(p—y)* and =z 5,2

P ) x A2 [ 2792 exp( )z

x [(n— 1) + n(u — 7))

n(u— )21 "
=
Pl y) =to1(u|y,s%/n)

o<[1—|—



This is a lot of math!

Let’s see what this looks like in [Stan] code



Regression

We can also do regression models in Stan

Logistic regression definition:
y ~ Bernoulli (logit™(a + 8 * x))

Where
1

1+ exp(—2z)

logit™1(z) =

a: intercept
B € R%: coefficient vector



Let’s see what this looks like in code



What about priors for regression?

Priors are equivalent to regularization!

* Normal prior o = 1/\/7 < L2 regularization
* Laplace prior <> L1 regularization

Read more: https://bjlkeng.github.io/posts/probabilistic-interpretation-
of-regularization/

[Look at code]


https://bjlkeng.github.io/posts/probabilistic-interpretation-of-regularization/

Questions?
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